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Protein structure prediction is one of the major challenges in bioinformatics today.
Throughout the past five decades, many different algorithmic approaches have been
attempted, and although progress has been made the problem remains unsolvable even for
many small proteins. While the general objective is to predict the three-dimensional
structure from primary sequence, our current knowledge and computational power are
simply insufficient to solve a problem of such high complexity.

Some prediction algorithms do, however, appear to perform better than others, although it
is not always obvious which ones they are and it is perhaps even less obvious why that is. In
this review, the reported performance results from 18 different recently published prediction
algorithms are compared. Furthermore, the general algorithmic settings most likely
responsible for the difference in the reported performance are identified, and the specific
settings of each of the 18 prediction algorithms are also compared.

The average normalized r.m.s.d. scores reported range from 11.17 to 3.48. With a
performance measure including both r.m.s.d. scores and CPU time, the currently best-
performing prediction algorithm is identified to be the I-TASSER algorithm. Two of the
algorithmic settings—protein representation and fragment assembly—were found to have
definite positive influence on the running time and the predicted structures, respectively.
There thus appears to be a clear benefit from incorporating this knowledge in the design of new
prediction algorithms.

Keywords: protein structure prediction; algorithms; performance; ab initio; de novo
1. INTRODUCTION

RamSamudrala once wrote ‘Proteins don’t have a folding
problem. It’s we humans that do’ (Samudrala 1990) and
indeed that seems to be the case. For five decades,
researchers all over the world have tried to break the code
and predict the three-dimensional structure of proteins
from their primary sequence. There are two very different
approaches to protein structure prediction: comparative
modelling and ab initio prediction.

In comparative modelling, predictions are based on
knowledge of structures of already known proteins,
such that the sequence of an unknown protein is aligned
to known proteins and, if a homology of more than 35%
exists, then the three-dimensional fold is assumed to be
the same (Edwards & Cottage 2003). Significant
progress has been made in comparative (also called
homology) modelling, as the method has proven to be
quite efficient and applicable for a majority of proteins
(Zhang & Skolnick 2004).
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There are, however, three reasons why ab initio
folding remains interesting. First of all, there still exists
a large number of proteins which do not show any
homology with proteins of known structure. Second,
comparative modelling does not offer any insight as to
why a protein adopts a certain structure; and third,
although some proteins show high resemblance to other
proteins they still adopt different structures, which in
principle means that predictions made by comparative
modelling are never fully reliable.

Many different definitions of ab initio algorithms exist.
The same definition as in Hardin et al. (2002) is adopted
here, such that the term is taken tomean to start without
knowledge of globally similar folds, which allows for
algorithms to use statistical information, secondary
structure prediction and fragment assembly (referred to
by some as de novo rather than ab initio prediction).

A vast number of ab initio algorithms have been
proposed throughout the years, with two prominent
focus areas, rapidity and quality. Some model only very
general principles of protein folding (Li et al. 2005; Guo
et al. 2007; Hockenmaier et al. 2007), which is fast but
J. R. Soc. Interface (2008) 5, 387–396
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typically not very accurate. On the other hand, some
create an actual simulation of the folding process
(Zagrovic et al. 2002), which yields excellent results
but an unacceptable running time. Most structure
prediction algorithms try to balance the two and lie
somewhere in between.

This review compares a wide range of ab initio
protein structure prediction algorithms in order both to
identify current state-of-the-art algorithms and to
make the effect of algorithm choice and algorithmic
configuration stand out. In order to design new and
better prediction algorithms, it is important to know
the paths already travelled, and this review is also
meant to facilitate this.

Some of the algorithms proposed have competed in
the biannual Critical Assessment of Techniques for
Protein Structure Prediction (CASP) competition
(http://www.predictioncenter.org/), which provides
an ultimate way for benchmarking prediction systems.
However, the CASP competition is concerned only with
quality of the predicted structures. Neither the algo-
rithmic details nor the running time is considered. This
review includes all elements that can affect perfor-
mance. Both algorithms proposed in connection with
the CASP free modelling category (for a review of the
latest CASP competition the reader is referred to Jauch
et al. (2007)), and algorithms proposed elsewhere are
included if they have been published along with their
results within the past 5 years. Several systems entered
in the CASP competition are not published and,
although the results are available on the Internet, the
algorithmic details are unknown, and such systems are
therefore excluded. Incidentally, the top-performing
algorithms in the CASP competitions tend to be
published, although the SBC system entered by
Elofsson andWallner along with the MQAP-Consensus
system from Gattie and the Luethy system are all
examples of systems that appeared to perform very well
in the free modelling category of the latest CASP VII
competition1, but to the best of our knowledge are
unpublished.

In §2, key parameters relevant for comparing predic-
tion algorithms are identified, and §3 concerns per-
formance comparison of the reported results from 18
prediction systems. The results of the comparison are
discussed in §4 and our conclusions are summarized in §5.
2. ALGORITHMIC PERFORMANCE FACTORS

Many parameters influence the running time of a
structure prediction algorithm and the quality of the
result. In order to determine why some prediction
systems are more successful than others, it is important
to identify all of the elements that can influence
performance. Depending on the problem, some search
algorithms (e.g. genetic algorithm or simulated
annealing) do for instance tend to perform better than
others, and the choice of algorithm may thus influence
performance. Some prediction systems use the same
1When looking at r.m.s.d. values published on http://www.
predictioncenter.org/casp7/Casp7.html

J. R. Soc. Interface (2008)
underlying optimization algorithm but differ in the
configuration of the chosen algorithm. In other words,
they differ in the setting of algorithmic parameters such
as protein representation, acceptable angle space and
energy functions. Furthermore, the composition of the
test set may also be responsible for the differences in
reported performance.

The effect of one particular setting compared with
another is difficult to document based on the results
from the literature, because the configuration of
individual prediction algorithms typically differ on
several settings. Also, some configurations work well
for one type of algorithm but not for other types of
algorithms. This is perhaps particularly pronounced
between algorithms that employ a multiple solution
search strategy, i.e. algorithms that search the entire
solution space at once (like genetic algorithms), and
algorithms that employ a single solution search
strategy, i.e. algorithms that search neighbourhoods
(like Monte Carlo, MC). When one thus looks at only a
single well-performing algorithm that uses a simplified
protein representation, it is difficult to know if the good
performance has anything to do with the protein
representation or if it is really due to for instance the
chosen restrictions on angle space or perhaps the chosen
set of test proteins. However, if many systems achieve
good performance using a specific protein represen-
tation, then that protein representation is most likely a
good idea. Regardless of the algorithm used, the trick is
to introduce restrictions to the search space in a way
that yields the proper trade-off where the relative gain
in speed does not exceed the relative loss in quality.

Protein structure prediction is highly complex, and
restrictions that can decrease the solution space in order
to make the problem more tractable are very attractive.
The specific configuration of an algorithm reflects the
restrictions that are introduced and as mentioned it is
usually distinct for every prediction system. The purpose
of this review is thus not simply to list the results obtained
with the different algorithms, but also to compare the
algorithms with respect to the settings in order to better
understand why some prediction systems appear to
perform better than others.

Subsections 2.1–2.5 deal with different factors that
may affect the performance of the search algorithms
used in prediction systems.
2.1. Representation

A protein can be represented in a number of ways
ranging from an all-atom to a simple Ca-trace
representation. The all-atom model is naturally the
most accurate representation, but unfortunately it
typically has a very direct negative effect on running
time, as more atoms require more time per iteration of
the algorithm. Excluding the small hydrogen atoms
from the representation and compensating by making
the binding atoms larger is a restriction that intui-
tively seems rather harmless, and it greatly reduces
the number of atoms that need to be considered.
Further reduction can be made by substituting
explicit side-chain representation with a single point
representing just the centre of mass. The CAlpha,

http://www.predictioncenter.org/
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CBeta, Side chain (CABS; Kolinski 2004) and the
UNified RESidue (UNRES; Lee et al. 1999) models are
popular examples of this type of reduction. Excluding
side chains altogether and thereby including only
backbone atoms is yet another simplification that can
be made, and at the far end of the scale we have the Ca-
trace representation, which is no doubt the most
optimal representation with respect to running time.
Of course, it is also a rather crude approximation of
the protein.

It should be noted that, although these are the types of
representations typically encountered in protein structure
prediction systems, even cruder simplifications can be
made. Experiments with designs of simplified residue
alphabets have been made where the amino acids are no
longer viewed as distinct, but grouped in categories
according to their physical propensities. The best-known
property-based sequence representation is probably the
hydrophobic–hydrophilic alphabet, butmany others exist
(see for instance Camproux & Tuffery (2005)). However,
such representations are primarily used in model systems
rather than real structure prediction systems.
2.2. Dihedral angle space

In principle, an infinite number of angles, dihedral angles
and bond lengths between atoms can be adopted, but, due
to the physical propensities of atoms, certain bond lengths
and angles are strongly favoured. By analysing known
proteins, it is also clear that amino acids have a definite
preference for specific dihedral angles (Ramachandran &
Sasisekharan 1968). A very common way to reduce the
solution space is thus to fix bond lengths and angles and
put restriction on the dihedral angle spaceby, for example,
incorporating rotamer libraries (Dunbrack 2002) or
operating on lattices.

Many restrictions on the dihedral angle space mean
that the algorithm will typically converge more quickly
than if there are no or only very few restrictions. However,
many restrictions on dihedral angle space alsomean that a
significant part of the solution space cannot be sampled,
and that the native structure may be unattainable. The
dihedral angle space sampled by prediction systems is
nearly always restricted in one way or another.
2.3. Energy function

The energy function is probably the parameter that has
received themost attention throughout the years, and for
good reason, as the energy function has an unquestioned
influence on the accuracy of the structures predicted. A
rather diverse set offunctions that range fromvery simple
to highly complex exists, but a perfect energy function
that will consistently identify the native structure among
decoys independently of the protein has yet to be found.
Simple energy functions are typically based on some very
general principles of protein folding such as hydrophobic
packing and hydrogen bonding whereas the more
complex functions incorporate many other kinds of
physical, chemical and statistical information, such as
electrostatic potentials, secondary structure tendencies
and so on.
J. R. Soc. Interface (2008)
Much research has been done in the field of energy
functions (Skolnick 2006) and a number of major
energy functions (also known as force fields) exist,
such as CHARMM and AMBER (see for instance
MacKerell (2004) for an overview), but most prediction
algorithms define and use their own versions. A
thorough description of the different energy functions
is beyond the scope of this study, and the reader is
referred to the individual papers for a detailed
description of the particular energy function used.

Generally, the energy functions can, however, be
divided into two groups: physics- and statistics-based
energy functions. Physics-based energy functions rely
on the calculation of energy in the protein, whereas
statistics-based energy functions derive their potential
from statistical observations. It is important to note
that both types of energy functions are approximations,
although statistics-based energy functions are perhaps
generally considered the cruder approximation of
the two.
2.4. Folding strategy

Predicting the structure of small proteins is naturally
easier (although still hard) than predicting the structure
of large proteins, since the solution space grows exponen-
tially with the number of amino acids. This fact has
motivated many to divide the proteins into a number of
fragments whose structure is predicted separately and
subsequently assembled—a strategy known as fragment
assembly. The method is currently very popular and also
very successful when either secondary structure predic-
tion algorithms (like PSIPRED; Jones 1999) or fragment
libraries are used to predict fragment structures.

However, two things should be noted in this respect.
First of all, using fragments one assumes that a fragment
always folds into a number of predefined ways. Once a
fragment is selected, it is considered rigid and it can be
replaced only by another fragment. Long-range
interactions in the protein under investigation are there-
fore not directly involved in shaping the fragments, which
may not be prudent. Second, although algorithms that
are based on secondary structure prediction and/or
fragment libraries are currently better at generating
native-like structures, they are, of course, forever bound
to the limitation of systems relying on known structures,
as secondary structure prediction algorithms are trained
on known structures and fragment libraries built from
known structures.
2.5. Test set

Unfortunately, a standard protein test set does not
exist, and so yet another parameter that must be
considered when evaluating the performance of a
prediction algorithm is the set of test proteins. The
number of proteins in the test set is of interest for
statistical reasons. For a large test set, it is less likely
that good results are obtained by mere ‘luck’ and the
algorithm is more likely to be generally applicable than
if the test set contained only a few test proteins. Since
most prediction algorithms are quite time consuming,
test sets are most often of limited size (up to 15),

http://rsif.royalsocietypublishing.org/


Table 1. Performance comparison of 18 structure prediction algorithms.

rep.a frag.b move setc energy func.d running timee no. of proteinsf length rangeg classh res. set sizei avg. r.m.s.d.j

MD simulation
Pande group; Zagrovic et al.

(2002)
all-atom no all physics years 1 [36] a 1 1.7

Liwo group; Liwo et al. (2005)k UNRES no all physics hours 4 [46–75] a 10 2.6
1 [48] a/b 10 3.9

replica exchange Monte Carlo
Shakhnovich group; Yang et al.

(2006)
all-atom no all statistics weeks 7 [46–77] a 15 4.3

3 [24–67] b 15 5.1
3 [57–75] a/b 15 4.4

Touchstone II; Zhang et al.
(2003)

CABS yes lattice statistics days 43 [36–157] a 2–22 6.7

41 [39–153] b 4–62 8.2
41 [47–174] a/b 2–56 8.3

Kolinski group; Latek et al.
(2007)

CABS yes lattice statistics days 4 [66–86] a 1 4.8

3 [45–137] b 1 8.5
2 [56–76] a/b 1 2.6

ZAM; Ozkan et al. (2007) all-atom yes restricted physics months 3 [46–73] a 1 3.0
2 [25–26] b 1 2.1
4 [35–57] a/b 1 3.0

Metropolis Monte Carlo
Rosetta; Rohl et al. (2004);

Bradley et al. (2005b)
all-atom yes restricted statistics months 3 [49–72] a 5 1.5

2 [59–67] b 5 8.0
11 [59–88] a/b 5 3.6

Monte Carlo-simulated annealing
SimFold; Fujitsuka et al. (2006) CABS-like yes restricted mixed months 14 [63–109] a 400 3.9

10 [28–72] b 400 7.5
12 [28–72] a/b 400 6.6

PROTINFO; Hung et al. (2005) all-atom no restricted statistics months 1 [53] a 5 5.0
1 [69] a/b 5 4.3

hyperbolic Monte Carlo
I-TASSER; Wu et al. (2007) Ca yes part lattice statistics hours 16 [49–118] a 5 3.5

14 [47–117] b 5 3.8
26 [47–117] a/b 5 4.3

conformational space annealing (CSA)
Profesy; Lee et al. (2004, 2005) backbone yes restricted physics 2 [28–46] a 5 4.2

2 [20–57] b 5 2.7

multi-objective evolutionary approach
Nicosia; Cutello et al. (2006) all-atom no restricted physics hoursl 3 [34–70] a 1 3.3
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rep.a frag.b move setc energy func.d running timee no. of proteinsf length rangeg classh res. set sizei avg. r.m.s.d.j

1 [46] a/b 1 4.4
evolutionary algorithms
Schug; Schug & Wenzel (2006) % H no restricted physics hours 1 [60] a 10 3.9
Profet; Koskowski & Hartke

(2004)
all-atom no all physics days 1 [34] a 5–10 1.6

2 [18–21] b 5–10 5.2

MOLS-genetic algorithms
Gautham; Arunachalam et al.

(2006)
all-atom yes restricted physics hours 4 [26–52] a 1 4.9

1 [16] b 1 1.6

branch and bound
M. Paluszewski & P. Winter

2007, unpublished data
Ca yes restricted statistics days 3 [43–65] a 10 000 4.6

1 [48] b 10 000 5.0
2 [68–76] a/b 10 000 6.3

aBB/CSA/MD
ASTROFOLD; Klepeis &

Floudas (2003)
all-atom yes restricted physics weeks 1 [69] a 1 6.2

3 [75–101] b 1 5.6
4 [56–95] a/b 1 4.9

probabilistic distance geometry optimization
PROPAINOR; Joshi & Jyothi

(2003)
Ca yes all statistics hours 21 [70–130] a 5–15 5.6

13 [74–130] b 5–15 6.9
18 [76–129] a/b 5–15 7.2

a The protein representation applied;b Fragment assembly; c Possible dihedral angles;d Energy function applied. Energy functions are either statistics or physics based; e A rough
estimate of how quickly a solution is found using a single processor; f Number of test proteins; g Sequence length range of the test proteins;h Structural class of the test proteins; i The
number of solutions returned by the systems (after clustering), from which the lowest r.m.s.d. structure is picked; j The average r.m.s.d. values of the best selected structures found for all

test proteins belonging to this structural class; k The algorithm did not always converge (beta sheet and alpha/beta sheet); l From personal correspondence.

Table 1. (Continued.)
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although the largest test set seen in this study includes
125 test proteins (Zhang et al. 2003).

The lengths of the individual test proteins
(e.g. number of amino acids) are also of interest, as the
structures of small proteins are both easier and faster to
predict than the structures of larger proteins. Skolnick
and colleagues (Reva et al. 1998) have previously
investigated the possibility of obtaining a native-like
structure bymere chance, and concluded that generating
a structure at random (although compact) that has an
r.m.s.d. below 6 Å is highly unlikely for a chain greater
than 60 amino acids, but naturally that chance increases
for smaller proteins. An algorithm that is able to predict
the structure of a protein of, say, 20 amino acids to an
r.m.s.d. of 6 Å is much less impressive than an algorithm
that can predict the structure of a protein of, say, 100
amino acids to an r.m.s.d. of 6 Å. Most test proteins
contain fewer than 100 amino acids.

Finally, the structural classes of the test proteins are
of interest. All proteins can generally be classified as
a, b, a/b or coil (Orengo et al. 1997), where the first
three categories are by far the most populated. A good
prediction algorithmmust be able to make equally good
predictions regardless of structural class. Hence confi-
dence in an algorithm relies also on the structural
classes of the test proteins. It is much harder to
conclude anything about the general applicability of an
algorithm that has been tested on only a few proteins
belonging to the same structural class than if the
algorithm has been tested on a larger number of
proteins from all structural classes. Most—but not
all—prediction systems are tested on proteins from all
structural classes (except coil structures which none of
the systems included in this study are tested on).
3. PERFORMANCE COMPARISON

When configuring an algorithm for structure prediction,
focus can be put on any or all of the parameters identified
in §2, which is reflected in the numerous prediction
algorithms proposed. The aim of this performance
comparison is primarily to contrast different algorithmic
approaches, but also to deduce any trends in the settings
of the algorithms. One must, of course, be cautious when
drawing conclusions about a given setting, as it is often
tied to the algorithm and the test proteins, but, when
comparing a relatively large number of algorithms, the
results may nevertheless indicate some general trends
that would be of interest in the design of new algorithms.

Performance is compared here between the reported
results of 18 recently proposed prediction algorithms
(published in the last 5 years). Several algorithms have
been excluded (even relatively known ab initio systems
such as Jones et al. (2005) and Zhou & Skolnick (2007))
because r.m.s.d. values between the native and predicted
structures have not been published in their papers. There
exist a number of alternative ways to compare structures
(such as d r.m.s.d., GDT_TS, TM score, etc.), and while
they may be better at expressing how well the algorithm
performs in terms of, for example, substructure formation
or core packing, the r.m.s.d. is the most commonly used
descriptor. Furthermore, an overall low r.m.s.d. is the
ultimate goal for a structure prediction algorithm if it is to
J. R. Soc. Interface (2008)
be used in practice. Algorithms designed to predict only
specific types of proteins (such asmembrane proteins) are
excluded. Algorithms based on exact knowledge of the
native structure are naturally also excluded, although the
contribution from DeRonne & Karypis (2006) is very
interesting from an algorithmic point of view. Finally,
newer versions of the algorithms are assumed to be
equally good or better than older versions, and therefore
only the latest versions have been included.

Although two of the algorithms participated in the
CASP VII competition (Bradley et al. 2005b; Wu et al.
2007), their results fromthe competition are not included.
As mentioned earlier, r.m.s.d. values are available on the
Internet, but have not yet been explicitly documented in
the literature.
3.1. Results

The results of the performance comparison are pre-
sented in table 1. The three columns ‘Avg. r.m.s.d.’,
‘Res. set size’ and ‘Running time’ constitute the
collected results for each algorithm.

TheAvg. r.m.s.d. columnspecifies the average r.m.s.d.
values for the best selected structures of all the test
proteins. The Res. set size refers to the size of the result
set, i.e. the number of predicted structures selectedby the
systems. For those systems that use clustering or
refinement, it refers to the number of results selected
after the initial results have been clustered or refined.
Many are reluctant to pick one cluster over another and
thus return a representative structure from each cluster.
There may be significant differences between the
representative structures chosen (see for instance Wu
et al. 2007), but r.m.s.d. is usually not reported for all
selected structures and thus only the lowest r.m.s.d. value
among the selected structures is included in the r.m.s.d.
average here.

The Running time column indicates how quickly the
algorithm finds a solution for a protein. Running times
generally depend on the length of the proteins, but as
mentioned earlier—and as is evident from table 1—most
test proteins included in the test sets are of comparable
length. The computer power available differs greatly, but
the timestated in the columngives a rough estimateof the
time required for a single standard PC processor to reach
a solution. Hence, if a group has used a cluster of 10
computers and 4 days to predict a structure, it will be
marked as ‘months’ (approx. 40 CPU days). The
algorithms (and results) included have all been published
in the last 5 years;while that is a fairly short time range, it
should be noted that computer power has increased
significantly in that period (a standard PC is roughly
three times faster today), andnewer algorithmshave thus
not only the benefit of previous experience but also the
benefit of significantly faster computers.
4. DISCUSSION

4.1. Algorithmic configuration

Detailed MD simulation of all-atom protein models
such as Zagrovic et al. (2002) is typically performed in
order to allow researchers to observe the folding

http://rsif.royalsocietypublishing.org/
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pathways—not merely to predict protein structure.
MD simulation has, however, proved to be very
accurate (for at least small proteins), and it has been
included here because it is technically possible to use
MD simulation for structure prediction, although it is
computationally extremely heavy and renders the
problem intractable for all but the smallest of proteins.
In a sense, one might say that the goal of a prediction
algorithm is to combine the accuracy of MD simulation
with the speed of (most) search algorithms.

Different flavours of theMC search strategy are by far
the most common types of algorithms used, but results
for all algorithms are for the most part comparable with
respect to accuracy. Studies that compare different MC
search strategies are performed regularly (Gront et al.
2000). They typically show that one algorithm performs
slightly better than those it is compared with, but this
may be related to the test proteins rather than to the
algorithm as such. From table 1, it would certainly seem
like all types of MC searches show roughly the same
performance. The I-TASSERalgorithm (Wu et al. 2007)
based on a Hyperbolic MC scheme stands out with
results being superior to the others, particularly when it
comes to running time.

Interestingly, excellent results are obtained quickly by
the Liwo group (Liwo et al. 2005), who also use MD
simulation but with a simplified residue representation.
The force field used is designed to compensate for the
missing atoms, andwhile some simulations—particularly
of proteins containing b-sheets—do not converge to a
final structure, the fact that the algorithm reached good
results extremely fast indicates an enthralling potential.
In fact, simplified residue representation appears to
generally have a positive effect on the running time of
the algorithms but a more or less undetectable effect on
accuracy irrespective of the type of algorithm used. As
mentioned previously, most prediction algorithms differ
on multiple settings, and it is thus usually difficult to
make any general conclusions about a particular setting.
Nevertheless, in this case where many algorithms are
aligned, it seems clear that the effect of a simplified
protein representation on overall accuracy is minimal.

Algorithms based on fragment assembly are generally
considered more successful than others (many of the best
algorithms in the CASP competition use this folding
strategy), and it certainly seems intuitively right that
fragment assembly would be much faster. This is not
evident from the results reviewed here where the strategy
does not appear to have any major influence on running
time. However, fragment assembly is most likely an
important factor in the high accuracy achieved by
algorithms such as I-TASSER and Rosetta, but one
should also bear in mind that the use of fragments makes
the system a borderline ‘comparative modelling’ system,
which relies heavily on existing structures.

Aside from MD simulation, the dihedral angle space
is restricted in nearly every algorithm. PROPAINOR
stands out as it takes a completely different approach to
the problem by sampling residue distance space rather
than angle space—thereby making all dihedral angles
possible. Most algorithms are off-lattice, but somemake
use of a lattice (at least for parts of the protein) and
with an expected positive influence on at least the
J. R. Soc. Interface (2008)
running time (Zhang et al. 2003; Latek et al. 2007;
Wu et al. 2007). It should also be noted that the
restrictions on dihedral angle space used by most do not
appear to have a detectable influence on the quality of
the predicted structures.

With regards to the two types of energy functions, it
would appear from this comparison that algorithms
that use a physics-based energy function find solutions
that are marginally better than the solutions found by
algorithms with a statistics-based energy function. No
influence on the running time of the algorithms can be
observed. It should be noted that statistics-based
energy functions vary greatly in the number of
parameters they include and thus a general trend
should not be extracted from this study.
4.2. Test set specific parameters

From table 1, it can be seen that only 11 out of the 18
algorithms have been tested on proteins from all
structural classes (except coil). The Liwo group (Liwo
et al. 2005) did in fact test proteins from the three main
structural classes, but, as the algorithm did not
converge for b-sheet structures, they have not reported
any results for these proteins. The smallest test sets
used included only one structure (Zagrovic et al. 2002;
Schug & Wenzel 2006) while the largest set included
125 structures.

Surprisingly, there appears to be no correlation
between running time and quality—in fact the fastest
algorithms obtain some of the best results even when
the lengths of the proteins are taken into consideration.
Algorithms that have been tested on test sets, which
include many and/or significantly larger proteins,
would be expected to obtain a higher average r.m.s.d.,
but the results would also be more reliable as it is very
difficult to tune parameters—intentionally or not—to
produce good results on large test sets (as discussed in
§2). TOUCHSTONE II (large test set) and to a certain
extent PROPAINOR (large proteins) support this
assumption, but the I-TASSER algorithm actually
maintains excellent performance despite being tested
on the second largest test set with proteins that are
both structurally diverse and have an average length of
81 amino acids (table 2).

From the results presented, it is evident that
predicting b-sheets is much more difficult, and most
algorithms that are tested on proteins belonging to
different structural classes perform worse on proteins
that contain b-sheets, indicating that the energy
function used is biased towards one kind of secondary
structure (usually a-helices). The results reported for
the ZAM (Ozkan et al. 2007) and Profesy (Lee et al.
2004, 2005) algorithms along with the results reported
by Gautham (Arunachalam et al. 2006) actually
showed better results for b-class structures, but that
is most likely due to the short length of the selected
b-class proteins. A few of the groups (Joshi & Jyothi
2003; Klepeis & Floudas 2003; Yang et al. 2006; Wu
et al. 2007) stand out as they seem to obtain equally
good results for all their proteins regardless of
structural class.
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Table 2. Summarized results. I-TASSER (italics) is found to be the overall best-performing algorithm.

no. of
proteinsa

avg.
lengthb

avg.
r.m.s.d.c

avg.
r.m.s.d.100

d
run
timee

Pande group; Zagrovic et al. (2002) 1 36 1.7 3.48 years
Liwo group; Liwo et al. (2005) 6 57 4.0 5.56 hours
Shakhnovich group; Yang et al. (2006) 13 58 4.5 6.18 weeks
Touchstone II; Zhang et al. (2003) 125 87 7.7 8.28 days
Kolinski group; Latek et al. (2007) 9 78 6.2 7.08 days
ZAM; Ozkan et al. (2007) 9 46 2.8 4.57 months
Rosetta; Rohl et al. (2004); Bradley et al. (2005a) 16 69 3.8 4.66 months
SimFold; Fujitsuka et al. (2006) 38 76 5.9 6.84 months
PROTINFO; Hung et al. (2005) 2 61 4.7 6.24 months
I-TASSER; Wu et al. (2007) 56 81 4.2 4.69 hours
Profesy; Lee et al. (2004, 2005) 4 38 3.5 6.78
Nicosia; Cutello et al. (2006) 4 52 3.5 5.20 hours
Schug; Schug & Wenzel (2006) 1 60 3.9 5.24 hours
Profet; Koskowski & Hartke (2004) 3 28 4.0 11.17 days
Gautham; Arunachalam et al. (2006) 5 33 4.2 9.42 hours
M. Paluszewski & P. Winter 2007, unpublished data 6 60 5.2 6.96 days
ASTROFOLD; Klepeis & Floudas (2003) 8 76 5.3 6.15 weeks
PROPAINOR; Joshi & Jyothi (2003) 52 98 6.4 6.47 hours
a Number of test proteins.
b Average length of the test proteins.
c Average r.m.s.d. values of the best selected structures found for all test proteins.
d Average r.m.s.d. values are normalized with respect to protein lengths.
e A rough estimate of how quickly a solution is found using a single processor.
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4.3. Performance results

Generally,most results reported look impressive. It should
of course be emphasized that the r.m.s.d. values reported
here are for the selected structures with the lowest r.m.s.d.
values found by the prediction systems. Note that most
algorithms return numerous structures, some with high
r.m.s.d. values and some with low r.m.s.d. values. A large
result set size is generally less attractive—even if it
includesanearnative structure—because the algorithmas
such is unable to separate that structure from the decoys.
Returning many solutions does, however, not necessarily
pose a problem, if there is some way to separate the ‘good’
structures from the ‘bad’ by, for example, using clustering
(Yang et al. 2006) or other filtering techniques (Eyal et al.
2007). As shown by the Res. set size column in table 1,
many systems return several solutions even after the
results have been clustered and the best solution is then
picked based on its r.m.s.d. score to the native protein. Of
course, in order to function as a reliable prediction system,
one must be able to pick the good structure without
knowledge of the native structure.

Table 2 summarizes the performance result of the
predictions. In the ‘Avg. r.m.s.d.100’ column, the average
r.m.s.d. values have been normalized with respect to the
length of the test proteins (Carugo&Pongor 2001), which
makes it easier to compare r.m.s.d. values for proteins of
different lengths. Most of the included published results
have an average r.m.s.d.100 value of approximately 6 Å.
Although the result reportedby thePande groupusing the
MD simulation is the lowest, it has two major drawbacks:
there are too few test proteins and the running time is very
poor. Furthermore, the protein folded is very small (only
36aminoacids).Fromthe r.m.s.d.100 values, it is clear that
the Rosetta algorithm (Bradley et al. 2005b) and the
I-TASSER algorithm (Wu et al. 2007) are at a near tie,
J. R. Soc. Interface (2008)
which was also seen in the latest CASP VII competition
(Jauch et al. 2007). The Rosetta algorithm (Bradley et al.
2005b) holds a long-standing record for achieving good
results at the CASP competitions, and so the results of the
16 test proteins are considered quite reliable. The
I-TASSER algorithm is, however, tested on amuch larger
test set of 56 proteins (including the same proteins as
Rosetta was tested on), and, with an excellent running
time that clearly outperformsRosetta, it is here concluded
to be the overall best-performing algorithm.Asmentioned
previously, the CASP VII results from I-TASSER and
Rosetta are available on the Internet, but not included
here. However, analysis of the r.m.s.d. values from CASP
VII reveals a picture similar to what is seen here. Both
I-TASSER and Rosetta use an MC sampling scheme
(although different variants), fragment assembly and a
statistics-based energy function, but they differ in protein
representation and acceptable dihedral angle space.

Finally, the need for a standard protein test set of
appropriate size must be emphasized. The trends
observed concerning parameter settings in this study
are based on (sparse) statistics, but could perhaps be
made into actual conclusions if all research groups used
the same test set (as is seen in other research areas).
Furthermore, a standard test set would make it difficult
to cheat and would allow for a more systematic and
reliable evaluation of algorithms.
5. CONCLUSION

The parameters for proper comparison of protein
structure prediction algorithms have been identified,
and the performance of 18 different ab initio prediction
algorithms has been compared with respect to these
parameters. In lack of a standard protein test set, it is
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usually difficult to evaluate the importance of one
particular algorithmic setting over another, but, owing
to the relatively large number of algorithms compared
here, certain trends in the settings could be identified.
Simplified protein representation was found to have
seemingly undetectable influence on accuracy, but a
definite positive influence on running time. The (very
popular) fragment assembly folding strategy ismost likely
responsible for the high accuracy achieved by some groups
(Bradley et al. 2005b; Wu et al. 2007), but it does not
appear to have any general positive influence on running
time. Half of the algorithms use a physics-based energy
function and, although they appear to slightly outperform
those using a statistics-based energy function, the com-
plexity of energy functions makes it impossible to draw
any reliable conclusions about the effect of physics-based
versus statistics-based energy functions. Surprisingly, the
overall best-performing algorithm—the I-TASSER algo-
rithm (Wu et al. 2007)—is also one of the fastest
algorithms included in this study.

As a final note, it should bementioned that this type of
performance comparison is made particularly difficult
because research groups test their algorithms on their
own selected proteins. A standard protein test set would
greatly enhance any possible trends in algorithmic
settings and could facilitate designs of new algorithms.
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